# Predictively Consistent Prior Effective Sample Sizes

Beat Neuenschwander Novartis Oncology, Basel, Switzerland

Joint work with Sebastian Weber, Heinz Schmidli (Novartis), and Anthony O'Hagan (Sheffield University)

> 1st Italian Bayesian Day for Clinical Research Italian Society of Pharmaceutical Medicine and Italian Biostatistics Group May 10, 2019, Torino, Italy



# Outline

Problem statement and motivation

Methods

Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

Applications

- 1. ESS for historical data prior
- 2. Hierarchical subgroup analyses

Summary and Outlook



### Problem statement

Assume we have

- a statistical model  $p(Y|\theta)$
- a prior distribution  $p(\theta)$
- a one-dimensional parameter  $\theta$

We want to quantify the prior information as

- an equivalent number of observations (events for the time-to-event setting)
- the prior effective sample size (ESS), an intuitive and useful metric



### Motivation: two applications

1. Assume we have historical control data from previous trials.

Knowing the *ESS* from the respective historical data prior for the control parameter helps designing an upcoming randomized trial with a smaller control group.

2. Hierarchical (borrowing) analyses for small subgroups.

The posterior *ESS* is a useful metric to quantify the amount of information for each subgroup.



Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

# Outline

#### Problem statement and motivation

### Methods

#### Conjugate analyses

General case ESS comparisons: examples Predictive consistency Computations

### Applications

- 1. ESS for historical data prior
- 2. Hierarchical subgroup analyses

Summary and Outlook



Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

# ESS for conjugate priors

The *ESS* is well-understood for conjugate Bayesian analyses, for example

- ► data  $N(\theta, \sigma^2)$ , known  $\sigma$ , prior  $\theta \sim N(m, \sigma^2/n_0)$ ,  $ESS = n_0$
- ► data  $Bin(n, \theta)$ , prior Beta(a, b), ESS = a + b
- data Pois( $\theta$ ), prior Gamma(a, b), ESS = b
- ► data  $Exp(\theta)$  ( $\theta = mean$ ), prior Gamma(a, b), ESS = a

There are three justifications for the respective ESS.



Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

### Justification 1: prior-to-posterior updating rule

The *ESS* follows directly from the updated posterior parameters.

Binomial-Beta example:

- posterior:  $\theta | r \sim Beta(a + r, b + n r)$
- updating rule: a → a + r, b → b + n r
   (a,b = "prior number of successes and failures")

$$\blacktriangleright$$
  $\Rightarrow$  *ESS* = *a* + *b*



Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

**U**NOVARTIS

Justification 2: posterior mean (a weighted average)

Posterior mean = weighted average of prior mean and sample mean (standard parameter estimate from data)

Binomial-Beta example:

- ► posterior mean:  $\frac{a+r}{a+b+n} = \frac{(a+b)\frac{a}{a+b} + n\frac{r}{n}}{a+b+n}$
- the non-normalized weights of prior and data are a + b and n, respectively

$$\blacktriangleright$$
  $\Rightarrow$  *ESS* = *a* + *b*

Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

**U**NOVARTIS

### Justification 3: variance ratio

Ratio of

- the expected variance from one observation.
- and the prior variance of the mean parameter  $\theta$

$$\mathsf{E}SS = rac{E_{ heta}\{\mathsf{Var}(Y_1| heta)\}}{\mathsf{Var}( heta)}$$

Binomial-Beta example:

- ► one-unit variance:  $E_{\theta}$ {Var( $Y_1|\theta$ )} =  $E_{\theta}$ { $\theta$ (1 -  $\theta$ )} =  $\frac{ab}{(a+b)(a+b+1)}$
- ► prior variance:  $Var(\theta) = \frac{ab}{(a+b)^2(a+b+1)}$

1

$$\blacktriangleright \Rightarrow ESS = a + b$$

Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

# Outline

### Problem statement and motivation

#### Methods

Conjugate analyses

#### General case

ESS comparisons: examples Predictive consistency Computations

### **Applications**

- 1. ESS for historical data prior
- 2. Hierarchical subgroup analyses

Summary and Outlook



# ESS: general case

We now move to the general, non-conjugate case.

- A conjugate prior does exist but another prior is used. For example, priors derived from historical data via a hierarchical model are not conjugate.
- A conjugate prior does not exist.

#### ESS conjugacy requirement:

# if the prior is conjugate, the general *ESS* method (formula) should give the known *ESS*.

Problem statement and motivation Methods Applications Summary and Outlook Comjugate analyses General case ESS comparisons: examples Predictive consistency Computations

In the following, three methods will be discussed. They build on the variance/precision-ratio justification 3 from the conjugate case.

- variance/precision-ratio methods
- Morita-Thall-Müller method [4]
- expected local-information-ratio (ELIR) method (new, [7])



Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

**NOVARTIS** 

One-unit Fisher information and prior information

Data: the information for one observation unit is the Fisher information

$$i_{\mathsf{F}}(\theta) = \mathsf{E}_{\mathsf{Y}_1|\theta}\{i_{\mathsf{F}}(\mathsf{Y}_1,\theta)\} = -\mathsf{E}_{\mathsf{Y}_1|\theta}\{\frac{d^2\log p(\mathsf{Y}_1|\theta)}{d\theta^2}\}$$

Analogously, the prior information is defined as

$$i(p(\theta)) = -rac{d^2 \log p(\theta)}{d\theta^2}$$

Note: these are functions of the parameter, not single numbers: so we can't simply take the ratio of the two to obtain the *ESS*.

Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

Variance/precision-ratio ESS (ESS<sub>VR</sub>, ESS<sub>VR</sub>)

Following justification 3, the variance-ratio and precision-ratio *ESS* are defined as:

$$ESS_{VR} = \frac{E_{\theta}\{i_{F}^{-1}(\theta)\}}{\operatorname{Var}(\theta)}, \quad ESS_{PR} = \frac{\operatorname{Var}^{-1}(\theta)}{E_{\theta}\{i_{F}(\theta)\}}$$
(1)

**U** NOVARTIS

Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

Morita-Thall-Müller ESS (ESS<sub>MTM</sub>)

- Morita, Thall and Müller [4] proposed another (more complicated) method, which turns out to be a version of the precision-ratio method.
- Idea: find sample size m such that

information of prior  $p(\theta)$ 

expected (under  $p(\theta)$ ) posterior information

(under a vague prior  $p_0(\theta)$ )

► Vague prior  $p_0(\theta)$ :  $E(p_0(\theta)) = E(p(\theta)) = \tilde{\theta}$ 



Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

Morita-Thall-Muüller ESS (ESS<sub>MTM</sub>)

Formally:  $ESS_{MTM}$  is the integer *m* that minimizes

$$|i(p_0(\tilde{\theta})) + E_{Y_m}\{i_F(Y_m; \tilde{\theta})\} - i(p(\tilde{\theta}))$$
(2)

...the distance (evaluated at the prior mean  $\tilde{\theta}$ ) between

- the first two terms: the expected posterior information for a sample of size *m* based on the vague prior *p*<sub>0</sub>(θ)
- third term: the information of the actual prior



Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations



- 1. Evaluation at the mean! MTM point out that this is necessary to fulfill the *ESS conjugacy requirement*, i.e., correct *ESS* under conjugacy.
- 2. The vague prior  $p_0$  is not unique: a minor issue because the respective prior information  $i(p_0(\tilde{\theta}))$  is small anyway (usually 1 or 0).
- 3. Restriction to integers not really needed
- 4. MTM give an algorithm to obtain the ESS



# ESS<sub>MTM</sub>...simplified

Note that E<sub>Ym</sub>{i<sub>F</sub>(Y<sub>m</sub>; θ̃)} = m ⋅ E<sub>Y1</sub>{i<sub>F</sub>(Y1; θ̃)}. This avoids the original minimization problem and leads to

$$ESS_{MTM} = \frac{i(p(\tilde{\theta})) - i(p_0(\tilde{\theta}))}{E_{Y_1}\{i_F(Y_1;\tilde{\theta})\}}$$
(3)

i(p<sub>0</sub>(θ̃)) = 0 and replacing E<sub>Y1</sub> {i<sub>F</sub>(Y1; θ̃} by i<sub>F</sub>(θ̃) leads to a further simplication (Gene Penello, CDRH-FDA)

$$ESS_{MTM.P} = \frac{i(p(\tilde{\theta}))}{i_F(\tilde{\theta})}$$
(4)

**U**NOVARTIS

Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

Expected local-information-ratio ( $ESS_{ELIR}$ )

We propose the following ESS:

▶ the expected local-information-ratio ESS

$$ESS_{ELIR} = E_{\theta} \{ \frac{i(p(\theta))}{i_{F}(\theta)} \}$$
(5)

Note the similarity to

$$ESS_{MTM.P} = \frac{i(p(\tilde{\theta}))}{i_F(\tilde{\theta})} \qquad \tilde{\theta} = \text{prior mean} \qquad (6)$$

a plug-in version of ESS<sub>ELIR</sub>

Result: ESS<sub>ELIR</sub> fulfills the ESS conjugacy requirement

Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

# Example: ESS<sub>ELIR</sub> for binomial data with Beta prior

- ► Binomial-Beta example:  $r|\theta \sim Bin(n, \theta), \theta \sim Beta(a, b)$
- Fisher and prior information

$$i_{F}(\theta) = \frac{1}{\theta(1-\theta)}, \quad i(p(\theta)) = \frac{a-1}{\theta^{2}} + \frac{b-1}{(1-\theta)^{2}}$$
  

$$\blacktriangleright ESS_{ELIB} =$$

$$E_{\theta}\{(a-1)\frac{1-\theta}{\theta} + (b-1)\frac{\theta}{1-\theta}\} = (a-1)\frac{b}{a-1} + (b-1)\frac{a}{b-1}$$
$$= a+b \qquad (a,b>1)$$

**U**NOVARTIS

Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

# ESS<sub>ELIR</sub> for natural parameter in exponential family

One-parameter exponential family with natural parameter η, and conjugate prior:

 $p(y|\eta) = \exp\{y\eta - M(\eta)\}, \quad p(\eta) = \exp\{n_0 m_0 \eta - n_0 M(\eta)\}$ 

► Fisher and prior information, *ESS<sub>ELIR</sub>* 

 $i_F(\theta) = d^2 M(\theta)/d\theta^2, i(p(\theta)) = n_0 \cdot d^2 M(\theta)/d\theta^2, ESS_{ELIR} = n_0$ 

Binomial-Beta example:

$$\eta = \log\{\theta/(1-\theta)\}, M(\eta) = \log\{1 + \exp(\eta)\},$$
$$n_0 = a + b \qquad (a, b > 0)$$

Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

# Outline

### Problem statement and motivation

#### Methods

Conjugate analyses

General case

#### ESS comparisons: examples

Predictive consistency Computations

### **Applications**

- 1. ESS for historical data prior
- 2. Hierarchical subgroup analyses

Summary and Outlook



Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

### Comparison: two examples

#### The methods

- look very similar
- fulfill the ESS conjugacy requirement for the standard one-parameter exponential families
- will now be compared for two examples:
  - 1. normal data and Student-t prior
  - 2. exponential data and generalized Gamma prior



Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

# Example 1: normal data, Student-t prior

Normal data with mean  $\theta$ , known variance  $\sigma^2$ , t(df) prior with scale *s*.

The heavy-tailed prior is robust against prior-data conflict (O'Hagan [8], O'Hagan and Pericchi [9])

$$i_{F}(\theta) = 1/\sigma^{2}, \quad i(p(\theta)) = \frac{1}{s^{2}} \frac{df + 1}{df} \frac{1 - \theta^{2}/df}{(1 + \theta^{2}/df)^{2}}$$

$$ESS_{VR} = ESS_{PR} = (\sigma/s)^{2} \frac{df - 2}{df} \qquad (df > 2)$$

$$ESS_{MTM} = (\sigma/s)^{2} \frac{df + 1}{df} \qquad (df > 1)$$

$$ESS_{ELIR} = (\sigma/s)^{2} \frac{df + 1}{df + 3}$$

### ESS for example 1

ESS for normal data with Student-t prior:  $(\sigma/s)^2 = 100$ 

| df | VR | PR | MTM | MTM.P | ELIR |
|----|----|----|-----|-------|------|
| 2  | —  | —  | 150 | 150   | 60   |
| 3  | 33 | 33 | 133 | 133   | 67   |
| 4  | 50 | 50 | 125 | 125   | 71   |
| 5  | 60 | 60 | 120 | 120   | 75   |
| 10 | 80 | 80 | 110 | 110   | 85   |
| 50 | 96 | 96 | 102 | 102   | 96   |

# Example 2: exponential data, gen-Gamma prior

Exponential data with hazard  $\theta$ , generalized Gamma prior with shape, scale, and family parameter *a*, *s*, and *f*:

$$p( heta) = rac{f heta^{a-1} \exp\{-( heta/s)^f)\}}{s^a \Gamma(a/f)}$$

More flexible than Gamma prior, may be useful to fit a prior with expert-elicited median and interquartile range.

Special cases: Gamma (f = 1) and Weibull (f = a)

$$i_F(\theta) = 1/\theta^2, \quad i(p(\theta)) = (a-1)/\theta^2 + f(f-1)\theta^{f-2}/s^f$$

$$ESS_{ELIR} = af - 1$$

**U**NOVARTIS

The other ESS can also be obtained analytically.

26 (51) Predictively consistent prior ESS (Neuenschwander)

### ESS for example 2

ESS for exponential data with gen-Gamma prior (a, s = 1, f)

| distribution | а      | f     | VR   | PR  | MTM | MTM.P | ELIR |
|--------------|--------|-------|------|-----|-----|-------|------|
| Gamma        | 9.00   | 1.00  | 10.0 | 6.2 | 9.0 | 8.0   | 8.0  |
| Weibull      | 3.00   | 3.00  | 8.6  | 3.5 | 7.3 | 6.3   | 8.0  |
| gen-Gamma    | 2.54   | 3.54  | 7.9  | 2.3 | 6.4 | 5.4   | 8.0  |
| Gamma        | 25.00  | 1.00  | 26   | 22  | 25  | 24    | 24   |
| Weibull      | 5.00   | 5.00  | 20   | 15  | 18  | 17    | 24   |
| gen-Gamma    | 4.52   | 5.52  | 19   | 14  | 16  | 15    | 24   |
| Gamma        | 121.00 | 1.00  | 122  | 118 | 121 | 120   | 120  |
| Weibull      | 11.00  | 11.00 | 84   | 79  | 77  | 76    | 120  |
| gen-Gamma    | 10.51  | 11.51 | 81   | 76  | 74  | 73    | 120  |

U NOVARTIS

Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

# Outline

### Problem statement and motivation

#### Methods

Conjugate analyses General case ESS comparisons: examples

#### Predictive consistency

Computations

### Applications

- 1. ESS for historical data prior
- 2. Hierarchical subgroup analyses

Summary and Outlook



Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

NOVARTIS

# The predictive consistency criterion

So far, we have seen various ESS methods, which

- ▶ fulfill the ESS conjugacy requirement
- can differ considerably for non-conjugate priors

This is a major problem. Which method should be used? More than the *ESS conjugacy requirement* is needed.

### Predictive consistency:

for a sample of size M, the expected posterior *ESS* must be the sum of the prior *ESS* and M.

Do the methods fulfill this basic requirement?

Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

**b** NOVARTIS

### Predictive consistency? Normal-t example

#### Prior ESS and expected posterior ESS – M

|       |        | prior ESS | (expect | ted posteri | or ESS)–M |
|-------|--------|-----------|---------|-------------|-----------|
|       | method |           | M=10    | M=100       | M=1000    |
| df=2  | VR     |           | 36      | 54          | 60        |
|       | MTM    | 150       | 95      | 74          | 63        |
|       | ELIR   | 60        | 60      | 60          | 60        |
| df=5  | VR     | 60        | 63      | 72          | 76        |
|       | MTM    | 120       | 107     | 87          | 77        |
|       | ELIR   | 75        | 75      | 75          | 75        |
| df=50 | VR     | 96        | 96      | 96          | 97        |
|       | MTM    | 102       | 101     | 99          | 97        |
|       | ELIR   | 96        | 96      | 96          | 96        |

Only *ESS<sub>ELIR</sub>* is predictively consistent.

30 (51) Predictively consistent prior ESS (Neuenschwander)

Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

**U**NOVARTIS

# Predictive consistency? Exponential-Weibull example

|        |      | prior ESS | (expe | ected po | osterior ESS)-M |
|--------|------|-----------|-------|----------|-----------------|
| a = 3  | VR   | 8.6       | 9.6   | 10       | 10              |
|        | PR   | 3.5       | 5.6   | 6.0      | 6.2             |
|        | MTM  | 7.3       | 8.2   | 8.8      | 9.0             |
|        | ELIR | 8         | 8     | 8        | 8               |
| a = 7  | VR   | 36        | 41    | 49       | 50              |
|        | PR   | 32        | 37    | 45       | 46              |
|        | MTM  | 33        | 37    | 45       | 49              |
|        | ELIR | 48        | 48    | 49       | 48              |
| a = 11 | VR   | 84        | 91    | 111      | 121             |
|        | PR   | 79        | 86    | 107      | 117             |
|        | MTM  | 77        | 82    | 100      | 116             |
|        | ELIR | 120       | 120   | 121      | 121             |

conjugate analyses General case Applications Summary and Outlook Conjugate analyses General case ESS comparisons: example: Predictive consistency Computations

# ESS<sub>ELIR</sub>: proof of predictive consistency

 $Y_M$  : predictive data of size M, with posterior ESS

$$ESS(p(\theta|Y_M)) = E_{\theta|Y_M} \{ \frac{i(p(\theta)) - d^2 \log p(Y_M|\theta) / d\theta^2}{i_F(\theta)} \}$$

Expected posterior ESS under prior predictive distribution

$$E_{Y_{M}}\left[E_{\theta|Y_{M}}\left\{\frac{i(p(\theta)) - d^{2}\log p(Y_{M}|\theta)/d\theta^{2}}{i_{F}(\theta)}\right\}\right]$$
  
=  $E_{\theta}\left[E_{Y_{M}|\theta}\left\{\frac{i(p(\theta)) - d^{2}\log p(Y_{M}|\theta)/d\theta^{2}}{i_{F}(\theta)}\right\}\right]$   
=  $E_{\theta}\left\{\frac{i(p(\theta)) + Mi_{F}(\theta)}{i_{F}(\theta)}\right\} = ESS(p(\theta)) + M$ 

# Outline

### Problem statement and motivation

#### Methods

Conjugate analyses General case ESS comparisons: examples Predictive consistency

### Computations

### **Applications**

- 1. ESS for historical data prior
- 2. Hierarchical subgroup analyses

Summary and Outlook



# Computational aspects

- ► If the integral in *ESS<sub>ELIR</sub>* is not available analytically:
  - ▶ obtain *ESS<sub>ELIR</sub>* by simulation
  - For large S, simulate θ<sub>s</sub> (s = 1,..., S) from the prior and then take the mean of the i(p(θ<sub>s</sub>))/i<sub>F</sub>(θ<sub>s</sub>) ratios
- If the prior is only available as an MCMC sample
  - approximate the prior by a mixture of standard distributions
  - Diaconis and Ylvisaker [3] showed that this can be done to any degree of accuracy
  - Software: e.g., *RBesT* R-package [15], *SAS PROC FMM* [11]



1. ESS for historical data prior

2. Hierarchical subgroup analyses

# Outline

### Problem statement and motivation

#### Methods

Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

### Applications

### 1. ESS for historical data prior

2. Hierarchical subgroup analyses

### Summary and Outlook



ESS for historical data prior
 Hierarchical subgroup analyses

NOVARTIS

# 1. Prior ESS for historical data prior

A small proof-of-concept (PoC) trial (Baeten et al. [1])

- Disease: ankylosing spondylitis, a chronic inflammatory disease
- Binary endpoint: response at week 6
- ▶ Randomized trial: secukinumab (T) vs. placebo (C)
- Standard design: would require n = 24 per arm
- Historical placebo data from 8 trials  $\rightarrow$  prior  $p(\pi_C)$
- What is the prior's ESS?
- A historical data design was used with  $n_T = 24$ ,  $n_C = 6$

ESS for historical data prior
 Hierarchical subgroup analyses

### 1. Historical data and MAP prior

Median and 95%-intervals for event and MAP event rate for new trial (left panel), and MAP prior density (solid line) with two-component Beta mixture approximation (dashed line) (right panel).



Ankylosing Spondylitis

ESS for historical data prior
 Hierarchical subgroup analyses

# 1. Historical data prior: MAP prior

- Data model:  $r_j | \pi_j \sim \text{Bin}(n_j, \pi_j)$
- ▶ Parameter model: on log-odds scale,  $\theta_j = \log{\{\pi_j/(1 \pi_j)\}}$

$$\theta_1, \ldots, \theta_8, \theta_{\star} | \mu, \tau \sim N(\mu, \tau^2)$$

- ▶ Prior distributions:  $\mu \sim N(0, 10^2)$ ,  $\tau \sim$  half-N(scale=1)
- meta-analytic-predictive prior for new study (Spiegelhalter et al. [13], N et al. [5], Schmidli et al. [12], Viele et al. [16]):

$$p(\theta_{\star}|r=(r_1,\ldots,r_8))$$

 Appproximations to the MCMC MAP prior: single moment-matching Beta (poor approximation), 2- and 3-component Beta mixtures

ESS for historical data prior
 Hierarchical subgroup analyses

) NOVARTIS

# 1. ESS for MAP prior

#### Prior ESS for historical data prior

```
\begin{array}{cc} \text{MAP prior approximation} & \textit{ESS}_{\textit{ELIR}} \\ & \text{Beta}(6.3, 18.3) & 25 \\ 0.67 \cdot \text{Beta}(16.30, 49.74) + 0.33 \cdot \text{Beta}(3.1, 8.1) & 35 \\ 0.53 \cdot \text{Beta}(6.1, 18.1) + 0.37 \cdot \text{Beta}(30.0, 91.7) + 0.10 \cdot \text{Beta}(2.1, 4.7) & 36 \end{array}
```

### ESS for the other (predictively inconsistent) ESS

- variance-ratio: 26 (same for the three priors)
- MTM: 25, 55, 79 (!)

1. ESS for historical data prior

2. Hierarchical subgroup analyses

# Outline

### Problem statement and motivation

#### Methods

Conjugate analyses General case ESS comparisons: examples Predictive consistency Computations

### Applications

- 1. ESS for historical data prior
- 2. Hierarchical subgroup analyses

Summary and Outlook



ESS for historical data prior
 Hierarchical subgroup analyses

# 2. Posterior ESS for hierarchical subgroup analyses

A phase II (Chugh et al. [2], Thall et al. [14])

- Single arm design: to assess the effect of *imatinib* in 10 histological subtypes of sarcoma
- Binary endpoint: clinical benefit response (CBR)
- 179 patients: subtype sampe sizes between 2 and 29
- Similar response rates expected
- Design (Thall et al. [14]) based on a hierarchical model (HM)
- How much information can be gained by the HM analysis?
- What is the posterior ESS for each subgroup?

ESS for historical data prior
 Hierarchical subgroup analyses

# 2. Hierarchical models

HM-100: the original model, same (full exchangeability) model as for application 1:

$$\theta_1,\ldots,\theta_{10}|\mu,\tau\sim N(\mu,\tau^2)$$

Robust versions: mixtures with weights w<sub>j</sub> for the above model and 1 - w<sub>j</sub> for independent priors for each θ<sub>j</sub>. Three robust models:
 HM-90, HM-75, HM-50 (w<sub>j</sub> = 0.9, 0.75, 0.5)

ESS for historical data prior
 Hierarchical subgroup analyses

**U**NOVARTIS

### 2. Posterior ESS for HM analyses

#### Substantial information gains even for robust HM analyses

|                 |      |      | HM-100 | HM-90 | HM-75 | HM-50 |  |
|-----------------|------|------|--------|-------|-------|-------|--|
| Subtype         | r/n  | (%)  |        | ESS   |       |       |  |
| Angiosarcoma    | 2/15 | (13) | 65     | 60    | 51    | 35    |  |
| Ewing           | 0/13 | (0)  | 56     | 46    | 36    | 24    |  |
| Fibrosarcoma    | 1/12 | (8)  | 61     | 55    | 45    | 30    |  |
| Leiomyosarcoma  | 6/28 | (21) | 78     | 71    | 62    | 47    |  |
| Liposarcoma     | 7/29 | (24) | 75     | 66    | 57    | 44    |  |
| MFH             | 3/29 | (10) | 74     | 68    | 61    | 46    |  |
| Osteosarcoma    | 5/26 | (19) | 77     | 72    | 62    | 48    |  |
| MPNST           | 1/5  | (20) | 55     | 49    | 39    | 23    |  |
| Rhabdomysarcoma | 0/2  | (0)  | 52     | 44    | 33    | 18    |  |
| Synovial        | 2/20 | (15) | 71     | 66    | 58    | 42    |  |

# Summary and Outlook

- ESS is an intuitive metric and is particularly useful for sample size determinations in clincial trials with prior information.
- There are various, similar precision-ratio methods available, which fulfill the minimal ESS conjugacy requirement.
- Somewhat surprisingly, the *ESS* can differ considerably.
- Only the newly proposed expected local-information-ratio ESS<sub>ELIR</sub> fulfills the predictive consistency requirement.



### Summary and Outlook

More research needed:

- What is the ESS if ESS<sub>ELIR</sub> does not exist (undefined integral)?
- Are there other definitions of ESS that fulfill both requirements?
- ► For the multivariate case,  $\theta = (\theta_1, ..., \theta_m)$ , what is the *ESS* for each parameter and the vector  $\theta$ ?



### References I

- - Baeten D et al. Anti-interleukin-17A monoclonal antibody secukinumab in ankylosing spondylitis: a randomized, double-blind, placebo-controlled trial. *The Lancet* 2013; 382: 1705–1713.
- Chugh R et al. Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma using a Bayesian hierarchical statistical model. *Journal of Clinical Oncology* 2009; 27(19): 3148–3153.



46 (51) Predictively consistent prior ESS (Neuenschwander)

Summary and Outlook

### References II



P. Diaconis and D. Ylvisaker. Quantifying prior opinion.

> Bavesian Statistics (Proceedings of the Second Valencia International Meeting) 1984; 2:133–148.



Norita S, Thall PF and Müller P. Determining the effective 📎 sample size of a parametric prior. *Biometrics* 2008; 64: 595 - 602.

📎 Neuenschwander B, Capkun-Niggli G, Branson M, and Spiegelhalter DJ. Summarizing historical information on controls in clinical trials. Clinical Trials 2010; 7: 5-18.



# References III

- Neuenschwander B, Wandel S, Roychoudhury S, and Bailey S. Robust exchangeability designs for early phase clinical trials with multiple strata. *Pharmaceutical Statistics* 2015; 15: 123-134.
- Neuenschwander B, Weber S, Schmidli H, O'Hagan, A. Predictively consistent prior effective sample sizes. (submitted).
- O'Hagan, A. On outlier rejection phenomena in Bayes inference. *Journal of the Royal Statistical Society, Series B* 1979; **41**, 358–367.



### **References IV**

- O'Hagan A and Pericchi L. Bayesian heavy-tailed models and conflict resolution: a review. Brazilian Journal of Probability and Statistics 2012; 26: 372–401.
- Pennello G and Thompson L. Experience with reviewing Bayesian medical device trials. *Journal of Biopharmaceutical Statistics* 2008; 18(1): 81–115.
- SAS Institute. SAS user guide: Statistics. The FMM procedure. Cary, NC: SAS Institute Inc., 2014.



# References V

- Schmidli H, Gsteiger S, Roychoudhury S, O'Hagan O, Spiegelhalter DJ and Neuenschwander B. Robust meta-analytic-predictive priors in clinical trials with historical control information. *Biometrics* 2014; 70: 1023–32.
- Spiegelhalter DJ, Abrams KR and Myles JP. Bayesian Approaches to Clinical trials and Health-Care Evaluation. 2004; Chichester: Wiley.
- Thall PF, Wathen J, Bekele B, Champlin R, Baker L, and Benjamin R. Hierarchical Bayesian approaches to phase II trials in diseases with multiple subtypes. *Journal of Clinical Oncology* 2003; 22: 763–780.



Summary and Outlook

### References VI



🛸 S. Weber.

RBesT: R Bayesian Evidence Synthesis Tools, 2017. R package version 1.2-3.

📎 Viele K, Berry S, Neuenschwander B, Amzal B, Chen F, Enas N, Hobbs B, Ibrahim JG, Kinnersley N, Lindborg S, Micallef S, Roychoudhury S and Thompson L. Use of historical control data for assessing treatment effects in clinical trials. Pharm Stat 2014; 13(1): 41-54.

