

Dipartimento di Scienze Matematiche

POLITECNICO

Predictive probability of success using surrogate endpoints

Gaëlle Saint-Hilary^{1,2}

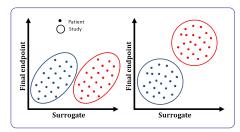
Valentine Barboux¹, Matthieu Pannaux¹, Mauro Gasparini², Véronique Robert¹, Gianluca Mastrantonio²

¹Servier, France ; ²Polytechnic University of Turin, Italy

Italian Bayesian Day for Clinical Research 10 May 2019

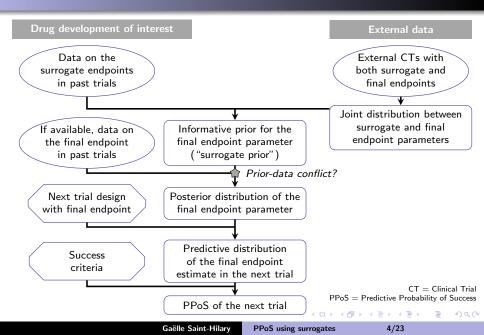
向下 イヨト イヨト

Introduction (1/2)


- The **Predictive Probability of Success (PPoS)** of a future clinical trial is a key quantitative tool for decision-making in drug development Spiegelhalter *et al.*, 1986; O'Hagan *et al.*, 2005; Gasparini *et al.*, 2013
- Derived from prior knowledge and available evidence
- Typically, available evidence = accumulated data on the clinical endpoint of interest in previous clinical trials
- However, a surrogate endpoint could be used as primary endpoint in early development, and no or limited data are collected on the clinical endpoint of interest

\Rightarrow General methodology to predict the success of a future trial from surrogate endpoints

イロン イヨン イヨン イヨン


Introduction (2/2)

- Terminology used in this presentation
 - Surrogate endpoint: marker used in early phase as a measure of the treatment effect
 - Final endpoint: clinical endpoint of interest (accepted for confirmatory phase from a regulatory perspective)
- "A correlate does not a surrogate make" Fleming and DeMets, 1996
 - A relationship between endpoints estimated from a single trial is insufficient to support predictions across trials
 - It focuses on the patient level association, while we are interested in the relationship between treatment effects on the endpoints at the trial level
 - ⇒ Meta-analytic approaches have been proposed to overcome this issue

Daniels and Hughes, 1997 ; Buyse *et al.*, 2000 ; Gail *et al.*, 2000 ; Baker and Kramer, 2003 ; Burzykowski *et al.*, 2005 ; Buyse *et al.*, 2016 ; Alonso *et al.*, 2017

Proposed approach

Motivating example Fictive but realistic case-study in Multiple Sclerosis

Drug development of interest

Data on the surrogate endpoints in past trials

> If available, data on the final endpoint in past trials

Next trial design with final endpoint

Success criteria Phase II trial (completed) Experimental arm vs Control arm N/arm = 100Primary (surrogate): Relapse rate at 1 year

Secondary (final): Disability progression at 2 years

Phase III trial (planned) Experimental arm vs Control arm N/arm = 337 Primary (final): Disability progression at 2 years

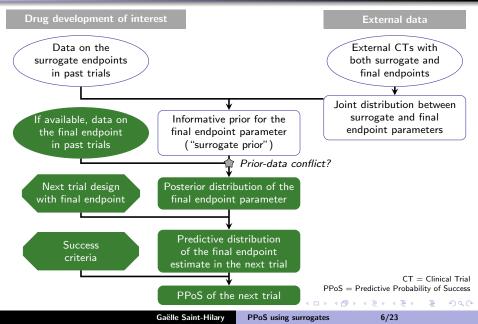
Success: p-value < 2.5 % (one-sided)

External data

External CTs with both surrogate and final endpoints

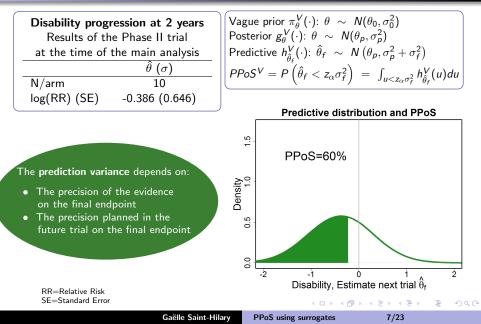
19 clinical trials (5 multi-arm) with both endpoints evaluated

Pozzi *et al.*, 2016 Bujkiewicz *et al.*, 2016 Sormani *et al.*, 2010

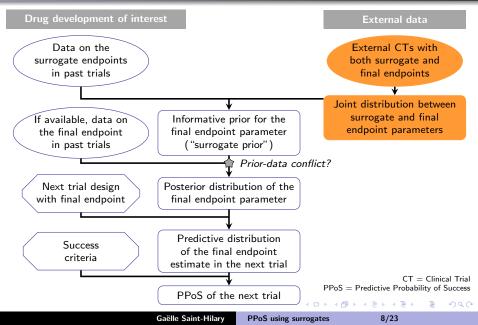

5/23

3

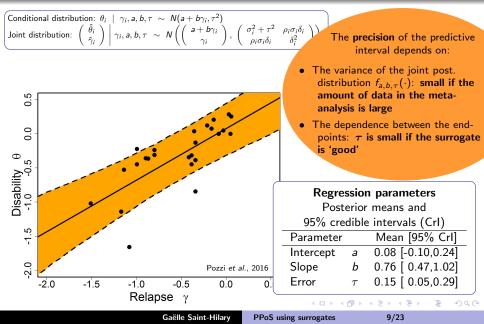
・ロト ・回ト ・ヨト ・ヨト

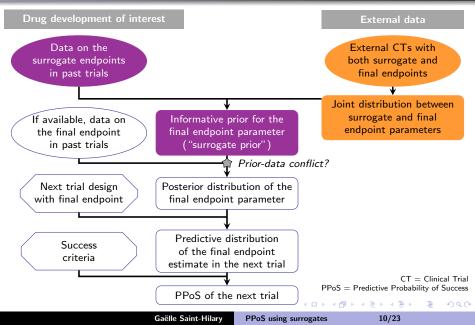

Without considering the surrogate endpoint... (1/2)

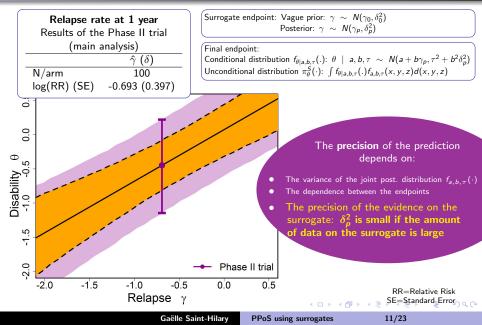
PPoS based on the final endpoint only (reminders)

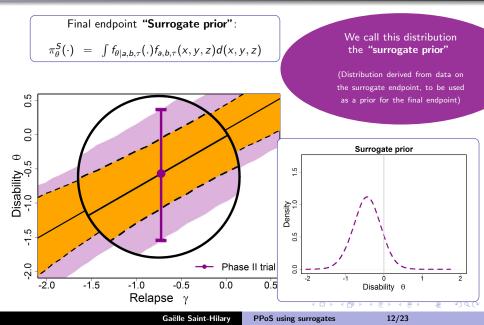


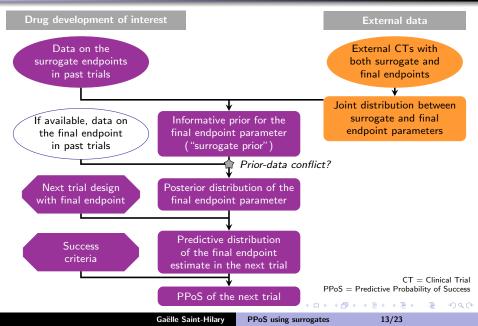
Without considering the surrogate endpoint... (2/2)

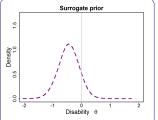

PPoS based on the final endpoint only (reminders)

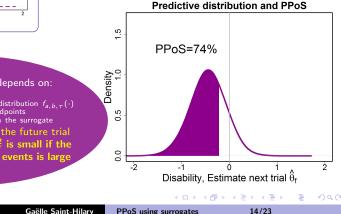

Joint distribution between surrogate and final endpoint parameters Meta-analytic approach using external CTs (1/2)


Joint distribution between surrogate and final endpoint parameters Meta-analytic approach using external CTs (2/2)

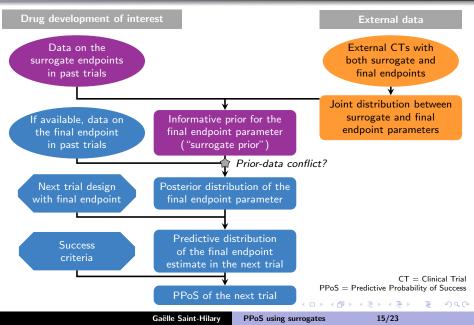

Informative prior for the final endpoint parameter (1/3) "Surrogate prior"

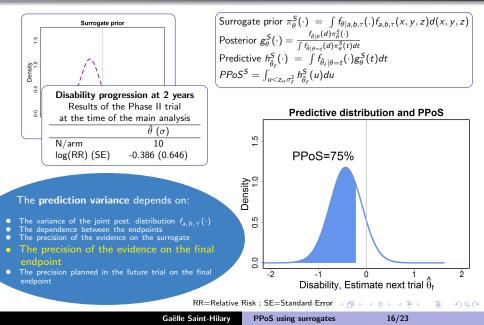

Informative prior for the final endpoint parameter (2/3) "Surrogate prior"


Informative prior for the final endpoint parameter (3/3) "Surrogate prior"

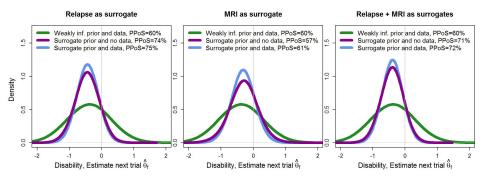

Without considering the data on the final endpoint... (1/2) PPoS based on the surrogate endpoint only

Without considering the data on the final endpoint... (2/2)**PPoS** based on the surrogate endpoint only


Surrogate prior $\pi_{\theta}^{S}(\cdot) = \int f_{\theta|a,b,\tau}(.)f_{a,b,\tau}(x,y,z)d(x,y,z)$ Posterior = prior (no data) Predictive $h_{\hat{\theta}_{\epsilon}}^{S}(\cdot) = \int f_{\hat{\theta}_{\epsilon}|\theta=t}(\cdot)\pi_{\theta}^{S}(t)dt$ $PPoS^{S} = \int_{u < z_{\alpha} \sigma_{\ell}^{2}} h_{\hat{\theta}_{\ell}}^{S}(u) du$


The prediction variance depends on:

- The variance of the joint post. distribution $f_{a,b,\tau}(\cdot)$ The dependence between the endpoints
- The precision of the evidence on the surrogate
- The precision planned in the future trial on the final endpoint: σ_{f}^{2} is small if the planned # of patients / events is large


Considering the whole evidence... (1/2)PPoS based on the surrogate and the final endpoints

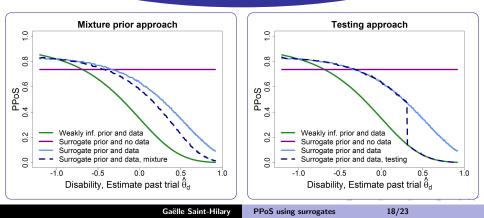
Considering the whole evidence... (2/2)PPoS based on the surrogate and the final endpoints

Summary and multiple surrogates

Consistency of the results \rightarrow Confidence in the decision

Gaëlle Saint-Hilary PPoS using surrogates

17/23

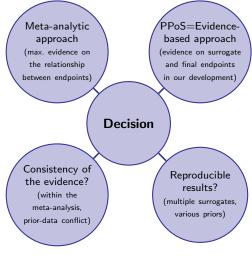

・ロト ・回ト ・ヨト

Prior data conflict

Evidences on the surrogate and the final endpoints may be conflicting...

→ Methods for handling prior-data conflict could be used (testing approach, mixture/robust prior, power prior...)

Mutsvari et al., 2016 ; Schmidli et al., 2014 ; Ibrahim et al., 2015


Concluding remarks

• General, reliable approach

- Makes the best use of all the available evidence
- Takes into account all sources of uncertainty
- Consistency and reproducibility assessments are part of the decision-making process
- Could be combined with subjective prior from experts

• Data demanding

• Less evidence \rightarrow more risk when making the decision...

Э

・ロト ・回ト ・ヨト ・ヨト

Saint-Hilary G, Barboux V, Pannaux M, Gasparini M, Robert C, and Mastrantonio G. Predictive probability of success using surrogate endpoints. *Statistics in Medicine*, 38(10):1753–1774, 2019.

Spiegelhalter DJ, Reedman LS, and Blackburn PR. Monitoring clinical trials: conditional power or predictive power? *Control Clin Trials*, 7(1):8–17, 1986.

O'Hagan A, Stevens JW, and Campbell MJ. Assurance in clinical trial design. *Pharmaceutical Statistics*, 4:187–201, 2005.

Gasparini M, Di Scala L, Bretz F, and Racine-Poon A. Predictive probability of success in clinical drug development. *Epidemiology Biostatistics and Public Health*, 10-1:e8760–1–14, 2013.

Fleming TR and DeMets DL. Surrogate end points in clinical trials: Are we being misled? *Annals of Internal Medicine*, 125, 1996.

Baker SG and Kramer BS. A perfect correlate does not a surrogate make. *BMC Medical Research Methodology*, 3(1):16, 2003.

Burzykowski T, Molenberghs G, and Buyse M. *The Evaluation of Surrogate Endpoints*. Springer Science+Business Media, USA, 2005.

3

・ロン ・回と ・ヨン・

Buyse M, Molenberghs G, Paoletti X, Oba K, Alonso A, Van der Elst W, and Burzykowski T. Statistical evaluation of surrogate endpoints with examples from cancer clinical trials. *Biometrical Journal*, 58(1):104–132, 2016.

Alonso A, Bigirumurame T, Burzykowski T, Buyse M, Molenberghs G, Muchene L, Perualila NJ, Shkedy Z, and Van der Elst W. *Applied Surrogate Endpoint Evaluation Methods with SAS and R*. Chapman & Hall/CRC, Taylor & Francis Group, USA, 2017.

Daniels MJ and Hughes MD. Meta-analysis for the evaluation of potential surrogate markers. *Statistics in Medicine*, 16(17):1965–1982, 1997.

Buyse M, Molenberghs G, Burzykowski T, Renard D, and Geys H. The validation of surrogate endpoints in meta-analyses of randomized experiments. *Biostatistics*, 1(1):49–67, 2000.

Gail MH, Pfeiffer R, Van Houwelingen HC, and Carroll RJ. On meta-analytic assessment of surrogate outcomes. *Biostatistics (Oxford, England)*, 1(3):231246, September 2000.

Pozzi L, Schmidli H, and Ohlssen DI. A bayesian hierarchical surrogate outcome model for multiple sclerosis. *Pharmaceutical Statistics*, 15(4):341–348, 2016.

э

・ロン ・回 と ・ ヨ と ・ ヨ と

Bujkiewicz S, Thompson JR, Riley RD, and Abrams KR. Bayesian meta-analytical methods to incorporate multiple surrogate endpoints in drug development process. *Statistics in Medicine*, 35(7):1063–1089, 2016.

Sormani MP, Bonzano L, Roccatagliata L, Mancardi GL, Uccelli A, and Bruzzi P. Surrogate endpoints for EDSS worsening in multiple sclerosis. a meta-analytic approach. *Neurology*, 75(4):302–309, 2010.

Mutsvari T, Tytgat D, and Walley R. Addressing potential prior-data conflict when using informative priors in proof-of-concept studies. *Pharmaceutical Statistics*, 15(1):28–36, 2016.

Schmidli H, Gsteiger S, Roychoudhury S, O'Hagan A, Spiegelhalter D, and Neuenschwander B. Robust meta-analytic-predictive priors in clinical trials with historical control information. *Biometrics*, 70(4):1023–1032, 2014.

Ibrahim JG, Chen MH, Gwon Y, and Chen F. The power prior: theory and applications. *Statistics in Medicine*, 34(28):3724–3749, 2015.

3

・ロン ・回と ・ヨン・

Thank-you!

くヨ♪

æ

- 170